A filter attribute selection method based on local reliable information
نویسندگان
چکیده
منابع مشابه
Reliable Attribute Selection Based on Random Forest (RASER)
Feature selection has become one of the most active research areas in the field of data mining. It allows removing redundant and irrelevant data sets of large size. Furthermore, there are several methods in the literature for selecting attributes. In this article, a new multi-objective method is proposed to select relevant and non-redundant features. Our proposed feature selection method is div...
متن کاملA hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملA Novel Information Theory Method for Filter Feature Selection
In this paper, we propose a novel filter for feature selection. Such filter relies on the estimation of the mutual information between features and classes. We bypass the estimation of the probability density function with the aid of the entropic-graphs approximation of Rényi entropy, and the subsequent approximation of the Shannon one. The complexity of such bypassing process does not depend o...
متن کاملA New Hybrid Framework for Filter based Feature Selection using Information Gain and Symmetric Uncertainty (TECHNICAL NOTE)
Feature selection is a pre-processing technique used for eliminating the irrelevant and redundant features which results in enhancing the performance of the classifiers. When a dataset contains more irrelevant and redundant features, it fails to increase the accuracy and also reduces the performance of the classifiers. To avoid them, this paper presents a new hybrid feature selection method usi...
متن کاملAttribute Selection Based on FRiS-Compactness
Commonly to classify new object in Data Mining one should estimate its similarity with given classes. Function of Rival Similarity (FRiS) is assigned to calculate quantitative measure of similarity considering a competitive situation. FRiS-function allows constructing new effective algorithms for various Data Mining tasks solving. In particular, it enables to obtain quantitative estimation of c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Intelligence
سال: 2017
ISSN: 0924-669X,1573-7497
DOI: 10.1007/s10489-017-0959-3